Method of Solving an Indeterminate Equation (कुट्टक) from Lilavati of Bhaskara-II.

Compiled by: Venkatesha Murthy, Hon. Head, Vedic Math's Group,
National Institute of Vedic Sciences, \# 58, Raghavendra Colony, Chamarajapet, Bangalore-18. Mobile; 09449425248. e-mail: Venkatesha Murthytippurgopu@gmail.com

Introduction: - Indian Mathematicians were basically astronomers, and they stated a set of steps to solve Problems of the type $y=\frac{A x+C}{B}$ in which A, B and C are known integers, and $x \& y$ are unknown integral values required. Method for solving such equations is "Kuttaka" or "Vallika Kuttakara". Problems on Linear Indeterminate Equations are in several ancient texts on Indian Astronomy.

Aryabhatiya of Aryabhata-I (5th c. AD) gave a general rule for solving linear indeterminate equation. Bhascara $I\left(6^{\text {th }} \mathrm{c} . \mathrm{AD}\right)$, Brahmagupta $\left(8^{\text {th }}\right.$ centuryAD), Mahaveeracarya ($9^{\text {th }}$ century AD) and others explained general methods to solve equations for integral solutions. -

I. Kuttaka (कुट्टक) from Lilavati of Bhascara-II, a section of Siddhanta-siromani:

In an indeterminate linear equation of the form $y=\frac{\mathrm{A} x+\mathrm{C}}{\mathrm{B}}, \mathrm{A}$ is dividend (भाज्य), B is divisor (भाजक) and C is addend (क्षेपक) are known integers, and x a multiplier (गुणक) and y a quotient (फलम् / लब्धि) are to be found.
Lilavati states a method to find the least integral values for x the multiplier (गुणक) and y the quotient (लब्धि) of the equation $y=\frac{\mathrm{A} x+\mathrm{C}}{\mathrm{B}}$ in five steps.

Step 1: - भाज्यो हारः क्षेपकश्चापवर्त्यः केनाप्यादौ संभवे कुट्टकार्थम् । येन च्छिन्नो भाज्यहारौ न तेन क्षेपश्चतद् दुष्टमुद्दिष्टमेव \|248\|
[Ref. 1 (p.102)]
Purport: - HCF of A and B must divide C for solving the equation. Otherwise the problem is improper (both x and y cannot be non-zero integers).

Step 2:- परस्परं भाजितयोर्ययोर्यः शेषस्तयोः स्यादपवर्तनं सः । तेनापवर्त्तेन विभाजितौ यौ तौ भाज्यहारौ दृढसंञकौ स्तः ||249\|
[Ref. 1 (p.103)]

Purport: - Divide A and B mutually and find their HCF (k). Divide A, B and C by the HCF (k) and get reduced dividend (a); reduced divisor (b); and reduced addend (c), and get the reduced equation in the form $y=\frac{a x+c}{b}=\left[\frac{\mathrm{A} x+\mathrm{C}}{\mathrm{B}}\right]$.

Step 3:- मिथोभजेत्तौ हृढभाज्यहारौ यावद् विभाज्ये भवतीय रूपम् । फलान्यधोधस्तदधो निवेश्य क्षेपस्ततः शून्यमुपान्तितेन ॥250॥
[Ref. 1 (p.103)]
Purport: - Divide the Reduced dividend (a) and reduced divisor (b) mutually (as in the case of finding their HCF) until the remainder 1 is obtained. Place the quotients so obtained one below the other and below them the reduced addend (c) and then zero.
Mathematically: Mutual division of dividend (a) and divisor (b) is;
$a=q_{1} b+r_{1} ; 0 \leq r_{1}<|b|$,
$b=q_{2} a+r_{2} ; 0 \leq r_{2}<r_{1} ;$ and so on, until the remainder $r_{\mathrm{n}}=1$ is obtained.
In general: Mutual division of a and b would be of the form;

$$
r_{(\mathrm{t}-2)}=q_{\mathrm{t}} r_{(\mathrm{t}-1)}+r_{\mathrm{t}} ; 0 \leq r_{\mathrm{t}}<r_{(\mathrm{t}-1)} \text {, in which } r_{(-1)}=a \text { and } r_{0}=|b| \text { for } \mathrm{t}=1,2,3, \ldots \mathrm{n} .
$$

When $r_{\mathrm{n}}=1$ is obtained, write the quotients $q_{1}, q_{2}, q_{3}, \ldots q_{\mathrm{n}}$ one below the other, and then the reduced addend (c) and then zero.

Step 4: - स्वोर्ध्वे हतेऽन्त्येन युते तदन्त्यं त्यजेन्मुहुः स्यादिति राशियुग्मम् \|251(a)\| ऊधर्वो विभाज्येन दृढेन तष्टः फलं गुणो स्यादधरो हरेण \|251(b)\|
[Ref. 1 (p.103)]
Purport ||251(a)\|: - Multiply the last quotient by the term below the quotient and, to the product add the last term, and write the sum against the quotient (in the next column). Reject the last term and repeat the process till a pair of results from the top is obtained.
$\|251(b)\|$ The first term (from the top thus obtained) is to be abraded by the reduced dividend to get the remainder (as the quotient y_{0}, लब्धि) and, $2^{\text {nd }}$ term from the top thus obtained is to be abraded by the reduced divisor to get the remainder (as the multiplier x_{0}, गुणक).
Mathematically; $\|251(a)\|$ Multiply the last quotient $\left[q_{(n)}\right]$ by the term below the quotient (addend c), and to the product add the term below it (0) to get $\mathrm{F}_{1}\left[\right.$ i.e., ; $\mathrm{F}_{1}=$ $\left.\left(q_{\mathrm{n}}\right) c+0\right]$, and write the sum $\left[\mathrm{F}_{1}\right]$ in the next column against the quotient $\left[q_{\mathrm{n}}\right]$.

Multiply the quotient $\left[q_{(n-1)}\right]$ by the addend c, and to the product add the term below it (0) to get F_{2} [i.e.,; $\left.\mathrm{F}_{1}=\left(q_{(\mathrm{n}-1}\right) c+0\right]$, and write the sum $\left[\mathrm{F}_{2}\right]$ in the next column against the quotient $\left[q_{(\mathrm{n}-1)}\right]$.

$\mathbf{F}_{(n+1)}=\boldsymbol{q}_{\mathbf{t}} \mathbf{F}_{(\mathrm{n}-\mathrm{t})}+\mathbf{F}_{(\mathrm{n}-\mathrm{t}-1)}$ In which $\mathrm{t}=1,2,3 \ldots(\mathrm{n}-1), \mathrm{n}$								
$q_{\text {t }}$								$F_{(n-t+1)}$
q_{1}	q_{1}	q_{1}	q_{1}			q_{1}	q_{1}	F_{n}
q_{2}	q_{2}	q_{2}	q_{2}			q_{2}	$\mathrm{F}_{(\mathrm{n}-1)}$	$\mathrm{F}_{(\mathrm{m}-1)}$
q_{3}	q_{3}	q_{3}	q_{3}			$\mathrm{F}_{(\mathrm{m}-2)}$		$\mathrm{F}_{(\mathbb{m}-2)}$
.	.	.	.					
.			
.			
$q_{(\mathrm{n}-3)}$	$q_{(\mathrm{n}-3)}$	$q_{(\mathrm{n}-3)}$	$q_{(n-3)}$	F_{4}	.			F_{4}
$q_{(\mathrm{n}-2)}$	$q_{(0-2)}$	$q_{(\underline{n}-2)}$	F_{3}					F_{3}
$q_{(\mathrm{n}-1)}$	$q_{(\mathrm{n}-1)}$	F_{2}						F_{2}
q_{n}	F_{1}							F_{1}
c								
0								

Mathematically: Procedure stated in the last lines of step 3 could be modified thus;
Modified Vallika process $(\|251(b)\|)$: - Write the quotients $q_{1}, q_{2}, q_{3} \ldots q_{\mathrm{n}}$ one below the other and below them the reduced addend (c), and zero.
Multiply the quotient $\left[q_{\mathrm{n}}\right]$ by the addend (c), and to the product add 0 , then write the $\operatorname{sum} \mathrm{F}_{1}\left[=\left[\mathrm{q}_{\mathrm{n}} \mathrm{c}+0\right]\right.$ in the left side of quotient $\left[q_{\mathrm{n}}\right]$ in the column $\left[\mathrm{F}_{(\mathrm{n}-\mathrm{t}+1)}\right]$.

Similarly get $\mathrm{F}_{2}\left[\right.$ i.e., $\left.; \mathrm{F}_{2}=q_{(\mathrm{n}-1)} \mathrm{F}_{1}+c\right]$, and write $\left[\mathrm{F}_{2}\right]$ in the left side of quotient $\left[q_{(\mathrm{n}-1)}\right]$ in the column $\left[\mathrm{F}_{(\mathrm{n}-\mathrm{t}+1)}\right]$.
Repeat the process from the bottom until a pair of results $\left[\mathrm{F}_{\mathrm{n}}\right]$ and $\left[\mathrm{F}_{(\mathrm{n}-1)}\right]$ in the top of the column $\left[\mathrm{F}_{(\mathrm{n}-\mathrm{t}+1)}\right]$ is obtained. This process has the name वल्लिका कुट्टकार (creeperlike process), which could be shown as a recurring relation thus;

$$
\mathrm{F}_{(\mathrm{n}-\mathrm{t}+1)}=q_{\mathrm{t}} \mathrm{~F}_{(\mathrm{n}-\mathrm{t})}+\mathrm{F}_{(\mathrm{n}-\mathrm{t}-1)} \text { where } \mathrm{F}_{0}=\mathrm{c} \text { and } \mathrm{F}_{(-1)}=0 \text { for }[\mathrm{t}=\mathrm{n},(\mathrm{n}-1), \ldots, 2,1] .
$$

This process is to be continued until a pair of results $F_{(n)}$ and $F_{(n-1)}$ from the top in the column $\left[\mathrm{F}_{(\mathrm{n}-\mathrm{t}+1)}\right]$ are obtained.

$\begin{gathered} \mathrm{F}_{(n-t 1)}=q_{\mathrm{t}} \mathrm{~F}_{(n-1)}+\mathrm{F}_{(n-t-1)} \\ \text { for } \mathrm{t}=1,2,3 \ldots(\mathrm{n}-1), \mathrm{n} \end{gathered}$	
$q_{\text {t }}$	$\mathrm{F}_{(\mathbf{n} \mathbf{t + 1)}}$
q_{1}	F_{n}
q_{2}	$\mathrm{F}_{(\mathrm{m}-1)}$
.	.
.	.
.	.
$q_{(\mathrm{n}-3)}$	F_{4}
$q_{(n-2)}$	F_{3}
$q_{(0-1)}$	F_{2}
q_{n}	F_{1}
c	
0	

$\mathrm{F}_{(\mathrm{n}-1)}$ is to be divided by the reduced dividend (a) to get the remainder $\left[\mathrm{F}_{(\mathrm{n}-1)}=a \mathrm{t}+\right.$ $\left.y_{0}\right]$; [$y_{0}=$ लब्धि $]$
$\mathrm{F}_{(\mathrm{n}-2)}$ is to be divided by the reduced divisor (b) to get the remainder $\left[\mathrm{F}_{(\mathrm{n}-2)}=b \mathrm{t}+x_{0}\right]$; [$x_{0}=$ गुणक $]$

Step 5: - एवं तदैवात्र यदा समास्ताः स्युर्लब्धयश्चेद्विषमस्तदानीम् । यदागतौ लब्धिगुणौ विशोध्यौ स्वतक्षणाच्छेषमितौ तु तौ स्तः ॥1252\| [Ref. 1 (p.103)]
Purport: - (i) When number of partial quotients n is even, and addend c is positive the remainders are the least value of $y=y_{0}$ (लब्धि) and the least value of $x=x_{0}$ (गुणक).
(ii) When number of partial quotients n is odd and c is positive, or when n is even and c is negative, the above remainders are to be subtracted from the respective divisors to get their least values of $y=\left(a-y_{0}\right)$ (लब्धि), and $x=\left(b-x_{0}\right)$ (गुणक).

Example 1:

एकविंशतियुतं शतद्वयं यद्गुणं गणक पञ्चषष्टियुक् ।
पञ्चवर्जितशतद्वयोद्धृतं शुद्धिमेति गुणकं वदाssशु तम् ॥252\|
[Ref. 1 (p.103)]
Purport: - O, mathematician, tell me the number when multiplied by 221 and increased by 65 is divisible by 195 ?

Answer: - The problem to solve is $y=\frac{221 x+65}{195}$.
According to step 1, HCF of the dividend 221 and the divisor $195=1$ is 13 , and it divides the addend 65. Therefore, $y=\frac{221 x+65}{195}$ can be solved for integral solutions of x and y.

According to step 2, when the dividend 221, divisor 195 and the addend 65 are divided by the HCF 13, the reduced dividend (17); reduced divisor (15) and reduced addend (5) are obtained. Then the reduced equation is; $y=\frac{17 x+5}{15}$.

According to step 3, the reduced dividend 17 and reduced divisor 15 are mutually divided (as in the case of finding their HCF) until the remainder 1 is obtained.

This Mutual division gives the quotients 1 and 7. They are placed one below the other, and below them the reduced addend 5 of the equation and zero.

Apply the Modified Vallika process (Step 4) thus;

q_{t}	F_{t}	$\mathrm{F}_{(\mathrm{n}-1)}=q_{\mathrm{t}} \mathrm{F}_{(\mathrm{n}-\mathrm{t}-1)}+\mathrm{F}_{(\mathrm{n}-\mathrm{t}-2)}$
1	$40=\mathrm{F}_{2}$	
7	$35=\mathrm{F}_{1}$	
5	$35=\mathrm{F}_{-1}$	
0	$0=\mathrm{F}_{0}$	

Modified Vallika process gives $\mathrm{F}_{1}=35$ and $\mathrm{F}_{2}=40$.
According to Step 5 (i);
$\mathrm{F}_{2}=40=17 \times 2+6$, hence the least integral value of y is; $y_{0}=6$, and
$\mathrm{F}_{1}=35=15 \times 2+5$, hence the least integral value of x is; $x_{0}=5$.
Number of partial quotients, $\mathrm{n}=2$ (an even number) and addend c is positive.
Therefore, $x=x_{0}=5$ and $y=y_{0}=6$ are the least integral values of x and y satisfy
$y=\frac{17 x+5}{15}=\frac{221 x+65}{195}$,
Its infinite integral solutions for x and y are; $x=15 \mathrm{t}+6$ and $y=17 \mathrm{t}+5$.
Any required values for them could be obtained by substituting a natural number to t.

Conclusion: -

Joseph Louise Lagrange (1736-1813 AD) found the least integral values of x and y for the problems like $\mathrm{A} x+\mathrm{B} y=\mathrm{C}(\mathrm{AD} .1770)$ by dividing A and B mutually to find their HCF (k). Then got reduced dividend (a); reduced divisor (b); and reduced addend (c), by dividing A, B and C by the $\mathrm{HCF}(\mathrm{k})$ and got the reduced equation in the form $a x+b y=c$. Then Lagrange used the partial quotients of a terminating continued fraction expansion $\frac{a}{b}=\left[\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \ldots, \mathrm{q}_{\mathrm{n}-1}, \mathrm{q}_{\mathrm{n}}\right]$ in a pair of recurring relations

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{r}} x_{\mathrm{r}-1}+x_{\mathrm{r}-2}=x_{\mathrm{r}} ; \text { where } x_{-1}=1, x_{0}=0, \\
& \mathrm{q}_{\mathrm{r}} y_{\mathrm{r}-1}+y_{\mathrm{r}-2}=y_{\mathrm{r}} ; \text { where } y_{-1}=0, y_{0}=1,
\end{aligned}
$$

In which $\mathrm{r}=(1,2,3 \ldots(\mathrm{n}-1), \mathrm{n})$
The least integral values of x and y for the problem $\mathrm{A} x+\mathrm{B} y=\mathrm{C}$ are;
$x=x_{n}=\mathrm{q}_{\mathrm{n}} x_{\mathrm{n}-1}+x_{\mathrm{n}-2}$ and $y=y_{n}=\mathrm{q}_{\mathrm{n}} y_{\mathrm{n}-1}+y_{\mathrm{n}-2}$

Bhaskara-II (born $1114 \mathbf{A D}$) found the least integral values of x and y for the problems like $y=\left[\frac{\mathrm{A} x+\mathrm{C}}{\mathrm{B}}\right]$, by dividing A and B mutually to find their HCF (k).

Then got reduced dividend (a); reduced divisor (b); and reduced addend (c), by diviing A, B and C by the $\mathrm{HCF}(\mathrm{k})$ and got the reduced equation in the form $y=\frac{a x+c}{b}=\left[\frac{\mathrm{A} x+\mathrm{C}}{\mathrm{B}}\right]$. Afterwards, a and b are mutually divided using a recurring operation;
$r_{(\mathrm{t}-2)}=q_{\mathrm{t}} r_{(\mathrm{t}-1)}+r_{\mathrm{t}} ; 0 \leq r_{\mathrm{t}}<r_{(\mathrm{t}-1)}$, in which $r_{(-1)}=a$ and $r_{0}=|b|$ for $\mathrm{t}=1,2,3, \ldots \mathrm{n}$.
until $r_{\mathrm{n}}=1$ is obtained, the partial quotients $q_{1}, q_{2}, q_{3}, \ldots q_{\mathrm{n}}$. Bhaskara II used the partial quotients $q_{1}, q_{2}, q_{3}, \ldots q_{\mathrm{n}}$ thus obtained in a process named Vallika (creeper like).

The Vallika (creeper like) could be represented by a a single recurring relation
$\mathrm{F}_{(\mathrm{n}-\mathrm{t}+1)}=q_{\mathrm{t}} \mathrm{F}_{(\mathrm{n}-\mathrm{t})}+\mathrm{F}_{(\mathrm{n}-\mathrm{t}-1)}$ in which $\mathrm{F}_{0}=\mathrm{c}$ and $\mathrm{F}_{(-1)}=0$ for $[\mathrm{t}=(\mathrm{n}-1),(\mathrm{n}-2), \ldots, 2$, 1] successively to get F_{n} and $F_{(n-1)}$.

The least integral values of y and x for the problems of the form $y=\frac{a x+c}{b}=\left[\frac{\mathrm{A} x+\mathrm{C}}{\mathrm{B}}\right]$ are found thus;
The least integral values of $y=y_{0}=$ लब्धि, is found as the remainder while dividing F_{n} by the reduced dividend (a) in $\left[\mathrm{F}_{\mathrm{n}}=a \mathrm{t}+y_{0}\right]$.

The least integral value of $x=x_{0}=$ गुणक is found as the remainder by while dividing $\mathrm{F}_{(\mathrm{n}-1)}$ by the reduced divisor (b) in $\left[\mathrm{F}_{(\mathrm{n}-1)}=b \mathrm{t}+x_{0}\right]$.
Joseph Louise Lagrange (born 1736 AD) gives a Method for solving Indeterminate equations in two unknowns for the least integral values using the partial quotients of the Continued Fraction Expansion of a rational number in a PAIR of recurring relations (from top to bottom).

Bhaskara II (born 1114 AD) gives a Method for solving Indeterminate equations in two unknowns for the least integral values using the partial quotients of the Continued Fraction Expansion of a rational number in a SINGLE recurring relation (from bottom to top, creeper like).

Reference: -

1. "COLEBROOKE'S TRANSLATION OF THE LILAVATI with notes"- by H C Bannerji, Asian Educational Services Madras (1993).
2. "श्रीभास्कराचार्यप्रणीतं बीजगणितम" - पं. श्रीविशुद्धानन्दगौड् तथा पं. श्रीबलदेवमिश्रः तेनैव संभोधितम् - चौखम्भा विद्याभवन् (१९९२).
3. "Lilavati of Bhaskaracharya: A Treatise of Mathematics of Vedic Tradition"-

S Patwardhan and others, Motilal Banarsidass Publishers Private Ltd. (2001).
4. "HINDU WORK ON LINEAR DIOPHANTINE EQUATIONS" : - Venkatesha Murthy, Dr. M S Rangachary, Dr. Baskaran): JOURNAL OF THE MADRAS NIVERSITY, [section B, Vol. 48 (1985) pp 1-19].
5. "COMPARATIVE STUDY OF Chakravala MCF \& ICF METHODS- Venkatesha Murthy, MATHEMATICS NEWS-LETTER, [Vol.5, No.3, P.50-57 (1995)]. Published by Ramanajuanujan Mathematical ociety.
6. "Continued Fractions" - C. D. Olds, The L. W. Singer Company, (1963)
7. "An Explanation to The Method Of Bhaskara-II to Solve Indeterminate Equation of the first degree'"- Venkatesha Murthy, Mathematics Teacher (India), [Vol.17, (1981) pp 2529].
8. "A Generalised Method To Solve Linear Indeterminate Equation For Integral Solutions" - Venkatesha Murthy, Indian Journal of Mathematics Education, [Vol. 17, No.3, (1998) pp 28-34].
9. 'KUTTAKA, BHAVANA AND CAKRAVALA' (in Kannada) - Venkatesha Murthy, Rashtriya Sanskrit Vidyapeeth (Deemed University) Tirupati. (2003).
10. 'SAMSKRITA GRANTHAGALALLI SAMKHYEGALU MATTU SAMKHYASUCAKAGALU’ (in Kannada) - Venkatesha Murthy, Rashtriya Sanskrit Vidyapeeth (Deemed University) Tirupati. (2004).
11. 'KUTTAKA - An Indian Method for solving Linear Indeterminate Equations for Integral Solutions'- Venkatesha Murthy, Rashtriya Sanskrit Vidyapeeth (Deemed University) Tirupati. (2004).
12. 'A FEW SALIENT CONCEPTS OF MATHEMATICS IN SANSKRIT'- Venkatesha Murthy, Rashtriya Sanskrit Vidyapeeth (Deemed University) Tirupati. (2004).
$24^{\text {th }}$ June 2015.
Bengaluru.

